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Abstract

QCD, the theory of the strong interactions, involves quarks interacting with

non-Abelian gluon fields. This theory has many features that are difficult

to impossible to see in conventional diagrammatic perturbation theory.

This includes quark confinement, mass generation, and chiral symmetry

breaking. This paper is a colloquium level overview of the framework for

understanding how these effects come about.
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I. INTRODUCTION

The standard model of particle physics combines electrodynamics, the weak interactions

responsible for beta decay, and the strong interactions of nuclear physics. The strong inter-

action sector is based on quarks interacting via the exchange of non-Abelian gluon fields, and

is referred to as “QCD” or “quantum chromodynamics.” It is in some sense the best defined

part of the standard model. Unlike electrodynamics, the behavior of QCD is controlled at

short distances by the phenomenon of “asymptotic freedom.” While electrodynamics may

have numerous successes, it remains unclear if it is well defined on its own. The weak in-

teractions have additional issues associated with the absence of a rigorous non-perturbative

scheme for incorporating parity violation.

Most of our quantitative understanding of quantum field theory comes by way of per-

turbative expansions. However, QCD has several features that are difficult to impossible

to understand in terms of Feynman diagrams. First is confinement; quarks do not propa-

gate as free particles, but always appear in color singlet bound states. Second, the theory

generates its own mass scale; even if the quarks are massless, the proton is not. Third is

the presence of chiral symmetry breaking, responsible for the pion being much lighter than

the rho, although both are made of the same quarks. And finally, the theory depends on

a hidden parameter, usually called “Theta.” Different values of Theta represent physically

inequivalent theories, despite having identical perturbative expansions. The framework for

investigating how these phenomena come about in QCD is the subject of this paper. For

those interested in more details, see the book From Quarks to Pions (Creutz, 2018).

II. PATH INTEGRALS

Our discussion revolves around the Feynman path integral formulation of quantum me-

chanics. Feynman’s classic 1948 article demonstrated a remarkable equivalence between a

quantum mechanical system and a statistical mechanics problem in one more dimension

(Feynman, 1948). Consider a particle moving in some potential V (x) and an action function

for an arbitrary path x(t) between t = 0 and t = β

S =
∫ β

0
dt ẋ2/2 + V (x) (1)
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Feynman showed that by integrating over all possible paths, there is an equivalence to the

quantum mechanics of a unit mass particle moving in the potential V with Hamiltonian

H = p̂2/2 + V (x̂) (2)

where x̂ and p̂ are quantum mechanical operators satisfying the canonical commutation

relation

[p̂, x̂] ≡ p̂x̂− x̂p̂ = i. (3)

Formally we have
∫

(dx(t)) e−S(x(t)) ∝ Tr e−βH (4)

where the trace is over the quantum mechanical Hilbert space. To define what is meant by

integrating over paths, Feynman introduced a discretization of time in steps of size a and

then integrated over the position on each time slice, as sketched in Fig. 1. The path integral

is defined in a limit a→ 0.
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FIG. 1 Dividing time into slices to define the path integral.

This process proceeds similarly for field theories, with a D dimensional quantum field

theory related to a D + 1 dimensional statistical mechanics problem. In field theory the

“paths” are usually referred to as “configurations.” This approach is the heart of the Monte

Carlo approach to lattice gauge theory.

In this picture, a path looks much like a wiggling string or worm. As the time spacing

becomes small, this worm becomes increasingly wiggly. Indeed, in the limit a → 0 the
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typical paths are not differentiable in the sense that

〈ẋ2〉 =

〈

(

xi+1 − xi
a

)2
〉

∝
1

a
→ ∞. (5)

This roughness extends to the field theory case, wherein the typical configurations are also

non-differentiable. This raises interesting ambiguities to which we return in Section IX.

III. PERTURBATION THEORY

At this point traditional treatments of quantum field theory turn to perturbation theory.

Divide the action into two parts

S = S0 + gSI (6)

where S0 describes a solvable theory of free particles and SI couples the fields together.

Expanding the path integral in the coupling g gives the usual Feynman diagrams wherein

free propagators are coupled by interaction vertices. But, for our purposes, it is important

to realize that the path integral approach is much more general.

For the electro-weak part of the standard model, the basic coupling α ∼ 1/137 is a small

number, and perturbation theory works well for all practical purposes. However Dyson

provided a simple argument that perturbation theory in α cannot converge (Dyson, 1952).

He argued that if it did, then one could analytically continue e → ie and we would have a

theory where like charges attract instead of repel. In this case one could produce separate

regions of charge large enough to bind additional electrons by more than their rest mass.

One could use this situation to create a perpetual motion machine by creating electron

positron pairs and sending them to the respective charged regions. This is sketched in Fig.

2. The vacuum of such a theory is unstable.1

e− e+

FIG. 2 If like charges attracted, one could create an unstable situation by creating two large regions

of opposite charge and tossing particle-antiparticle pairs into them.

1 The reader might note a similarity between this argument and the presence of Hawking radiation from a

black hole. The main difference is that Hawking radiation reduces the mass of the black hole, while the

process described here increases the net charge of the corresponding orbs.
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The problems with perturbation theory are particularly acute with QCD, the theory of

quarks and gluons. If the coupling vanishes, g = 0, the physical propagating fields are quarks

and massless gluons. However as soon as g 6= 0 we have a theory where the physical particles

are protons and pions. This is a qualitatively different spectrum. The gluon electric fields

between quark charges change from a Coulombic spread into a flux tube giving a linear

potential, as sketched in Fig. 3. To understand these qualitative changes, one must go

beyond perturbation theory.

Q
_

Q

FIG. 3 The gluon electric field between quark pairs becomes concentrated into a tube of flux with a

net energy per unit length. The tension in this string is roughly 14 tons.

IV. DIVERGENCES AND RENORMALIZATION

As is well known, relativistic quantum field theory is replete with divergences that require

renormalization. One must introduce a cutoff, and then remove it by a limiting procedure.

The basic idea is to fix a few physical observables and adjust the bare couplings and masses

in such a way that the physics remains finite as the cutoff is removed. In the process the

bare charges and masses absorb the divergences by either going to infinity or zero.

Historically most regulators used in practice, such as Pauli-Villars or dimensional, are

based on perturbation theory. One starts to calculate and on finding a divergent diagram

inserts the cutoff. But QCD requires a non-perturbative regulator. This is where lattice

gauge theory comes in, with the lattice spacing a being a cutoff. In terms of the world lines

a quark might take, they are replaced by single steps on the lattice, as sketched in Fig. 4.

Most lattice formulations are based on Wilson’s (Wilson, 1974) elegant picture of quarks

hopping between sites while picking up non-Abelian phases on the bonds. We return to this

in Section VII.
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FIG. 4 On the lattice a world line of any particle is replaced by a sequence of discrete hops. The

size of these hops represents an ultraviolet cutoff and should be taken to zero for the continuum

limit.

As a simple example of how renormalization might theoretically proceed, consider taking

the proton mass as the physical observable.2 This is expected to remain finite, even if the

quark masses vanish. Ignoring quark masses for the moment, the proton mass is a function

of the lattice spacing a and the coupling g. We want to vary the coupling for the continuum

limit so the proton mass is constant. For this we have

a
d

da
mp(a, g) = 0 =

(

∂

∂g
mp

)(

a
dg

da

)

+ a
∂

∂a
mp. (7)

Since the only dimensional input is the lattice spacing, dimensional analysis tells us

a
∂

∂a
mp = −mp. (8)

Putting this together, we conclude

a
dg

da
≡ β(g) =

mp

∂
∂g
mp

. (9)

This totally non-perturbative definition shows formally how g should depend on a for the

physical limit.

2 Because of difficulties calculating with light quarks, usually one uses other physical quantities to hold

fixed. One example is the mass of the Ω− particle since massive strange quarks are easier to handle

(Capitani et al., 2011).
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V. ASYMPTOTIC FREEDOM

While shirking perturbation theory to this point, a remarkable feature of the function

β(g) is that it does itself have an expansion in g, and this expansion gives non-perturbative

information on how to take the continuum limit. Gross, Wilczek, and Politzer in their Nobel

Prize winning papers showed (Gross and Wilczek, 1973; Politzer, 1973)

β(g) = β0g
3 + β1g

5 +O(g7) (10)

where

β0 =
1

16π2
(11− 2Nf/3) (11)

and Nf is the number of distinct quark “flavors” under consideration (Gross and Wilczek,

1973; Politzer, 1973). A year later Caswell and Jones(Caswell, 1974; Jones, 1974) calculated

β1 =
(

1

16π2

)2

(102− 22Nf/3). (12)

A remarkable feature of this expansion is that β0 and β1 are independent of the details of

the regularization scheme, although higher terms are not. This means that this result is

immediately applicable to the lattice as well.

The differential equation obtained by combining Eqs. (9) and (10)

a
dg

da
= β0g

3 + β1g
5 +O(g7) (13)

is easy to solve, giving

a =
1

Λ
g−β1/β2

0 exp

(

−1

2β0g2

)

(1 +O(g2)) (14)

where Λ is an integration constant. Note the factor of exp
(

−1
2β0g2

)

has an essential singularity

and cannot be expanded in a power series in g; the dependence of the lattice spacing on g

cannot be seen directly in perturbation theory. This equation also shows that taking the

lattice spacing to zero requires g to go to zero. This is what is called “asymptotic freedom.”

The integration constant Λ has dimensions of mass.3 While the classical theory with

3 In units where both h̄ and c are unity.
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massless quarks contains no dimensional scale, renormalization forces us to bring one in. All

particle masses, including the proton, are proportional to Λ

mp ∝ Λ ∝
1

a
g−β1/β2

0 exp

(

−1

2β0g2

)

(15)

again showing non-perturbative behavior! The idea that renormalization can eliminate a

dimensionless coupling g while generating an overall mass scale has been given the marvelous

name “dimensional transmutation” (Coleman and Weinberg, 1973).

VI. QUARK MASSES

So far we have ignored the masses of the quarks. These also need to be renormalized,

requiring additional physical things to be fixed for the continuum limit. That brings in more

integration constants. We’ll be brief here and only note that the bare mass m of any quark

flavor should satisfy

a
dm

da
= mγ(g) = m(γ0g

2 + . . .) + non perturbative (16)

where γ0 =
8

(4π)2
(Chetyrkin et al., 1998; Vermaseren et al., 1997). The “non-perturbative”

expression in the above equation allows terms that fall faster than any power of g and will

play a role in later discussion. As before, this equation is easily integrated

m =M gγ0/β0 (1 +O(g2)) (17)

where M is another integration constant. There is one such Mi corresponding to each quark

species i. Note that since g goes to zero for the continuum limit, so do the bare quark masses

mi. The full continuum requires taking both the bare g and m together, as sketched in Fig

5.

The continuum theory depends only on the dimensional integration constants Mi and Λ.

Once these are known, all physical results are in principle determined. While they depend

on the physical quantities held fixed for renormalization, their specific values depend on the

details of the regulator. As will be discussed in Section IX, they can mix together depending

on the details of the scheme. The physical observables being held fixed, such as the proton

8



0

a

m(a)

g(a)

FIG. 5 For the continuum limit, both the bare coupling and quark masses flow towards vanishing

values.

and pseudoscalar masses, are all that the theory ultimately depends on.

VII. THE LATTICE

The primary role of lattice gauge theory is as a non-perturbative regulator. It provides

a minimum wavelength through the lattice spacing a, i.e. a maximum momentum of π/a.

Avoiding the convergence difficulties of perturbation theory, the lattice provides a route

towards a rigorous definition of a quantum field theory as a limiting process.

As formulated by Wilson, the lattice cutoff remains true to many of the underlying

concepts of a gauge theory. In particular a gauge theory is a theory with a local symmetry.

With the Wilson action being formulated in terms of products of group elements around

closed loops, this symmetry remains exact even with the regulator in place.

The concept of gauge fields representing path dependent phases leads directly to the

conventional lattice formulation. We approximate a general quark world line by a set of

hoppings lying along lattice bonds, as sketched earlier in Fig. 4. The gauge field corresponds

to SU(3) phases acquired along these hoppings. Thus the gauge fields are a set, {U}, of group

matrices, one element associated with each nearest neighbor bond of the four-dimensional

space-time lattice.

Motivated by the electromagnetic flux being the generalized curl of the vector potential,

we identify the flux through an elementary square, or “plaquette,” on the lattice with the

phase factor obtained on running around that plaquette; see Fig. 6. Spatial plaquettes

represent the “magnetic” effects and plaquettes with one time-like side give the “electric”

fields. This motivates the conventional “action” used for the gauge fields as a sum over all
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elementary squares of the lattice. Around each square we multiply the phases and take the

real part of the trace

Sg =
∑

p

Re Tr
∏

l∈p

Ul ∼
∫

d4x E2 +B2. (18)

Here the fundamental squares are denoted p and the links l. As we are dealing with non-

commuting matrices, the product around the square is meant to be ordered, while, because

of the trace, the starting point of this ordering drops out.

2

1

3

4

FIG. 6 Analogous to Stoke’s law, the flux through an elementary square of the lattice is found from

the product of gauge matrices around that square. The dynamics is determined by adding the real

part of the trace of this product over all elementary squares.

For the quantum theory we turn to the path integral. To construct this, exponentiate

the action and integrate over all dynamical variables

Z =
∫

(dU)e−βS, (19)

where the parameter β controls the bare coupling. This converts the three space dimensional

quantum field theory of gluons into a classical statistical mechanical system in four space-

time dimensions.

The formulation is conventionally taken in Euclidean four-dimensional space. In effect

this replaces the time evolution operator e−iHt by e−Ht. Then the path integral involves

positive weights, and can be studied by standard Monte Carlo methods. This approach

currently dominates lattice gauge research. The simulations have had numerous successes,

from demonstrating confinement (Creutz, 1980) to reproducing the hadronic spectrum (Durr

et al., 2011).
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VIII. TOPOLOGY AND CHIRAL SYMMETRY

So far we have concentrated on aspects of the quantum theory. But non-perturbative

phenomena also play a role in the classical theory (Yang and Mills, 1954). With non-

Abelian gluon fields, a boundary condition such as the vanishing of the field Fµν at spatial

infinity does not require the gauge potential Aµ → 0, but only that the potential be a gauge

transformation of zero field, i.e.

Aµ −→ −
1

g2
h†∂µh (20)

where h is a group valued function of space. For our four dimensional world, the space at

infinity is sphere S3 and the function h(x) can wrap non-trivially about this sphere. The

space of smooth gauge fields separates into sectors labeled by this winding, which can be

determined directly from the gauge fields

g2

16π2

∫

d4xTrFF̃ = ν (21)

where the index ν is an integer. The path integral should sum over all such sectors. Of

course, as mentioned earlier, the typical gauge configuration is not smooth; indeed, it is

not differentiable in the continuum limit. This introduces a small ambiguity in defining the

winding; we will return to this briefly in Section IX.

These topological issues become particularly relevant upon introducing fermion fields, i.e.

the quarks. Whenever ν 6= 0 the Dirac operator has zero modes satisfying

Dψ(x) = γµ(∂µ + igAµ)ψ(x) = 0. (22)

Furthermore these modes are chiral

γ5ψ(x) = ±ψ(x). (23)

The basic index theorem relates the number of such modes to the index in Eq. (21)

ν = n+ − n− (24)

where n+ and n− are the number of positive or negative chiral modes, respectively.

11



The importance of the zero modes was nicely interpreted in (Fujikawa, 1979). Configu-

rations with non-trivial winding exist and must be included in the path integral. On these

formally

Trγ5 ≡
∑

i

〈ψiγ5ψi〉 = ν 6= 0. (25)

where the sum is over a complete set of modes of the Dirac operator. All other than the

zero modes occur either in chiral-conjugate pairs or “above the cutoff” and don’t contribute

to the sum. On such configurations the naive chiral transformation

ψ → eiγ5θψ (26)

is not a symmetry. Instead it changes the fermion measure in the path integral

dψ → |eiγ5Θ| dψ = eiνΘ dψ. (27)

If we try to make the change of variables in Eq. (26), topology inserts a factor of eiνΘ

into the path integral. This gives rise to a new and inequivalent theory. This breaking of

the naive chiral symmetry is at the heart of why the η′ particle is heavier than the pseudo-

Goldstone mesons. Indeed, Θ is a hidden non-perturbative parameter for QCD. For each

value of Θ, the perturbative expansion is identical! Perturbation theory alone does not fully

define the theory.

Note that the special case Θ = π reverses the sign of the quark mass term

mψψ → −mψψ. (28)

This means that three flavor QCD with negative masses is a different theory, i.e QCD at

Θ = π. This is in strong contrast to perturbation theory, wherein the sign of a fermion mass

is merely a convention.

The possibility of Θ 6= 0 raises an as yet unresolved puzzle. In this case CP symmetry is

violated. As no CP violation has been observed in the strong interactions, experimentally Θ

must be very small. Since CP violation is seen in the weak interactions, why are the strong

interactions different?
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IX. CONFINEMENT AND MASSES

Quarks are confined in hadrons. What does their mass mean? For a physical particle,

such as the proton, the mass follows from how it travels over long distances. We measure a

particle mass seeing how its energy and velocity are related

E = mc2 +
1

2
mv2 +O(mv4/c2). (29)

We can’t use this relation for quarks since they don’t propagate alone. Indeed the quark

propagator is a gauge and scheme dependent quantity.

The renormalization group integration constant M would seem to be a natural candidate

for a renormalized quark mass

m =M gγ0/β0(1 +O(g2)) + non-perturbative. (30)

But some time ago ’t Hooft (’t Hooft, 1976) showed that the “non-perturbative” effects will

mix the various Mi and Λ in non-trivial ways. With a lattice regulator, this mixing can

depend on the details of the lattice regularization scheme.

Chiral symmetry provides one handle on this. With degenerate light quarks, we have

light pseudoscalar bound states. The pion mass satisfies

M2
π ∝ mqΛ. (31)

In particular, massless quarks imply massless pions. For degenerate quarks, the concept of

a vanishing quark mass, mq = 0, is well defined.

When the quarks are not degenerate, the situation is less clear (Creutz, 2004). Simple

chiral perturbation theory indicates

M2
π ∝

mu +md

2
Λ. (32)

It is the average quark mass that determines the pion mass. A mass gap persists if only one

quark, say the up quark, is massless when the down quark has positive mass. Furthermore

it appears that physics remains sensible even if the up quark has small negative mass.
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Remember, as mentioned earlier, in perturbation theory the sign of a fermion mass is a

convention. This is not the case for QCD.

A particularly interesting situation occurs if the up quark mass is negative enough, i.e.

mu = O(−md). The neutral pion decreases in mass and eventually can pass through zero.

This gives rise to a condensation of the π0 field as sketched in Fig. 7. This CP violating

condensate is referred to as the Dashen phase (Dashen, 1971).
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FIG. 7 As the up quark mass decreases to negative values, the neutral pion mass can pass through

zero, giving rise to a π0 condensate.
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The neutral pion provides a simple example of how confinement can entangle the up and

down quark masses. This particle is a bound state of left and right handed quarks and also

involves both up and down quark species. If we create the π0 from up quarks, iuγ5u, and

then destroy it using down quarks, idγ5d, we have a spin flip process, as shown in Fig. 8.

Unlike in perturbation theory, this is not suppressed at small quark masses. It is due to

topology through what is called the “’t Hooft vertex” (’t Hooft, 1976).
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FIG. 8 A spin flip process involving both the up and down quarks occurs on exchanging pseudoscalar

mesons. The π and η contributions cannot cancel since the anomaly in the axial symmetry splits

their degeneracy.

We see that the naive result that left and right handed quark fields decouple at m = 0

fails non-perturbatively. Furthermore, this induces a mass mixing for different quark species.

If we turn on a small down quark mass in Fig. 8 and close the down quark lines in a loop,

we arrive at Fig. 9. This shows that a non-vanishing down quark mass can generate an

effective mass for the up quark, even if it started off massless. Indeed, topological effects

entangle all the quark masses, and Λ as well, in a scheme dependent way.4

u

u
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π, η
m

d
��������������
��������������
��������������

��������������
��������������
��������������

FIG. 9 A down quark mass induces an effective mass for the up quark.

Proceeding further through chiral perturbation theory, one can explore the qualitative

phase diagram shown in Fig. 10 for the two flavor theory as a function of the up and down

quark masses, including the CP violating Dashen phase (Creutz, 2011). This figure has some

interesting symmetries. First of all, it is symmetric on exchanging the up and down quarks.

4 Lattice regulators for fermion fields always require unphysical parameters to control the chiral anomalies

and what is known as the “doubling problem.” This brings an unavoidable scheme dependence. With

Wilson fermeions (Wilson, 1977) there is the parameter “r” on which quark mass ratios can depend.

Overlap fermions (Neuberger, 1998) depend on a scheme dependent kernel.
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FIG. 10 The phase diagram of two flavor QCD as a function of the quark masses. Here σ represents

to the quark condensate 〈ψψ〉.

This is related to isospin and protects the quark mass difference md − mu from additive

renormalization; i.e if the quarks are degenerate, they remain so through the regularization

process. It is also symmetric under flipping the sign of both quark masses, (mu, md) →

(−mu,−md). This is a consequence of the flavored chiral symmetry ψ → eiπτ3γ5ψ, a good

symmetry since τ3 is traceless. This in turn protects the average quark mass from an additive

renormalization.

It is important, however, to note the absence of any symmetry on flipping the sign of

a single quark mass, for example (mu, md) → (−mu, md). Away from md = 0 there is no

singularity at mu = 0. This is a strictly non-perturbative effect and shows that a non-

degenerate massless quark is not protected from renormalization.

Should we care if the specific values of the quark masses are a bit fuzzy? These quantities

are not directly measured in any scattering process. This issue is related to the ambiguities

in defining gauge field topology since typical gauge fields are non-differentiable (Creutz,

2013). Only real particle masses and their scatterings are physical.

X. CONCLUSION

Going beyond perturbation theory is crucial for understanding QCD. Lattice gauge theory

augmented with ideas from renormalization merge to give a coherent picture accommodating

non-perturbative concepts such as confinement and chiral symmetry breaking. We have seen

variations of QCD with identical perturbative expansions but different physics. This includes
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the situation of a non-vanishing Theta as well as the possibility of negative quark masses.

In general, the values of the quark masses, as well as their ratios, depend non-trivially on

the details of the regularization scheme.
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