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We consider a path-integral prescription for quantizing a variation of the bag model of Chodos et al. We treat
the bag shape as an independent dynamical variable where associated kinetic terms in the Lagrangian have
been taken to zero. We solve exactly a version of the model where a scalar field nas a different mass inside
and outside the bag. This solution is a free-field theory of a particle with a mass that is the root mean square
of the input interior and exterior masses. No remnants of the semiclassical bag structures remain. The fact
that the quantum fluctuations have so strongly altered the structure of the theory is associated with the lack
of any structure in the surface of the bag. We argue that a surface tension alone is inadequate to control these
fluctuations; both a surface tension and a surface thickness are needed.

I. INTRODUCTION

The bag model for quark confinement represents
an attempt to reconcile the successes of the quark
model with the nonobservation of free quarks.! By
approximating the bag with a classical spherical
cavity in which quarks are confined, the model
makes several strikingly accurate predictions on
hadronic properties.? From one point of view,
these successes suggest that the model provides a
good phenomenological approximation to some not
yet understood confinement mechanism, perhaps
the oft-advertised Yang-Mills gauge theory.® In
previous work we have shown on a classical level
how most features of the bag model followed in a
certain limit of a conventional local relativistic
field theory.* The achievements of the bag model
encourage further study of extended objects in
field theory as a possible first approximation to
hadronic physics.?

From another point of view, the starting
Lagrangian of the bag model could possess a deep-
er significance than purely phenomenological. The
theory may represent a new type of fundamental
field theory with relevance to the strong interac-
tions. This paper investigates this second view-
point. Using a Feynman path-integral prescrip-
tion,® we attempt to define a quantum theory for the
bag. We perform a sum over all possible bag
configurations, with no restriction on the shapes
or number of virtual bags present at any time. By
integrating over bag shapes independently of the
confined fields, we are treating the bag shape as
an independent variable. Such a procedure is sug-
gested if we consider the bag as arising in a limit
of a conventional field theory or if we wish to in-
troduce a surface tension. However, we must em-
phasize that this is not an equivalent procedure to
determining the classical bag shape as a function
of the fields and then evaluating the path integral
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over the fields alone. Thus our results may not
follow from other quantization procedures.

To define the integral over bag shapes we work
on a hypercubical lattice and at the end take the
lattice spacing to zero. This procedure indicates
that severe quantum fluctuations destroy the bag-
like structures of the theory. In their place we
find a local theory where the fields have properties
that are the average of those inside and outside
the bag. This result is rather surprising in that
it implies that our quantization prescription does
not have a classical limit. This is contrary to the
usual notion that the path-integral method natural-
ly gives the classical theory as 7 is taken to zero.
We suspect that the problem is associated with the
lack of any surface energy and thickness in the
original formulation. Inclusion of such properties
should provide an additional damping to the path
integral over bag shapes. Recently a version of
the model with surface tension but no surface
thickness has been presented.” We investigate this
possibility and find that such a term is insufficient
to control the fluctuations mentioned above. The
local theory of Ref. 4 gives the bags both surface
energy and thicknessbefore a limit giving the classi-
cal bag of Ref. 1 is taken. It has been argued that
the quantized version of this theory will possess
particle states corresponding to the classical bag-
like structures.®

Shalloway and Rebbi have discussed quantum
corrections to the bag theory by quantizing small
fluctuations around classical bag solutions.®
Rebbi has also considered a path-integral approach
to the bag in two dimensions.'® All these papers
ignore those fluctuations in which virtual bags ap-
pear in the vacuum and virtual regions of normal
vacuum appear inside the bag. It is precisely
these fluctuations that are so severe. Note that
such fluctuations are also ignored in the formal
solution to the bag in two-dimensional space-time.!
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The outline of this paper is as follows. In Sec.
I we formulate and evaluate the path integral over
bag configurations in a theory with a scalar field
possessing a different mass inside and outside the
bag. We find the resulting theory is that of free
particles with a mass squared that is the average
input mass squared. In Sec. III we perform the
path integrations in another order to show that the
result is unchanged. In Sec. IV we argue that the
addition of a surface tension does not affect our
conclusions. In Sec. V we conclude with some
general remarks.

II. BAGS AND PATH INTEGRALS

The bag model begins by giving a field different
properties inside and outside a region of space
called the bag. For simplicity we study a single
scalar field and consider the action

L) = fv a*{3o, () - sm? () - B}

+ fv a*x{o, 0 - MW},  (2.1)

Here V is the region of space called the bag, V
its complement, m and M the respective masses
of the field ¢ inside and outside the bag, and the
“bag constant” B represents an external pressure
acting to compress the bag. In Ref. 1 this Lagran-
gian is discussed in the limit M - «, which class-
ically confines the field entirely inside the bag.
We will find this limit is singular in the quantum
theory and thus we keep M finite.

Note that the Lagrangian in Eq. (2.1) has no ex-
plicit dependence on time derivatives of V. This
leaves open two interpretations for its dynamical
character in a quantum theory. We can consider
this Lagrangian as representing a limit of some
theory with nonvanishing kinetic term for V, such
as the bag model with surface tension as discussed
in Sec. IV or a local field-theoretical bag as stud-
ied in Ref. 4. This is the point of view adopted in
this paper, with the consequence that in the path-
integral quantization we sum over volumes and
fields independently.

A second interpretation of V is to specify it as a
given function of the field ¢ before quantization.
Then the field ¢ is considered as the only inde-
pendent variable to be integrated over for quanti-
zation. The specification used in Ref. 1 is that V'
maximizes the Lagrangian in Eq. (2.1) for a given
field configuration ¢(x). This amounts to

V(¢) ={&|3(M % - m*)¢*(&, 1) - B > 0},

eliminating V in terms of ¢ gives a nonpolynomial
Lagrangian that has been discussed by Chodos and
by Kazama and Goldhaber.!* It is presumably not
equivalent on a quantum level to the theory we con-
sider here.

In Eq. (2.1) we have given the same quadratic
kinetic term to ¢(x) both inside and outside the
bag. This means there is no direct coupling be-
tween the volume V and time derivatives of ¢. We
have done this to avoid possible complications in
the path-integral formalism which arise with de-
rivative couplings. The explicit surface tension
introduced in Sec. IV will also be a quadratic form
in the time derivatives of the variables describing
the bag shape. With purely quadratic kinetic
terms, the usual path-integral prescription is to
sum the exponential of 7 times the action over all
independent dynamical variables. Thus we are
led to study the quantity

W(J)=Nf a3y exp[i<8+f d‘*xJ(x)¢>(x)>},
(2.2)

where 8 is the action
s=f atL(t). (2.3)

Here the expression fdd) EV represents a sum
over all bag and field configurations in a way which
we will define by placing the theory on a discrete
space-time lattice. The structure of the theory is
probed by the external source J(x) which for sim-
plicity we couple linearly to ¢(x). In a theory of
non-Abelian gauge mesons coupled to quarks, this
source should be coupled to some gauge singlet
operator such as the electromagnetic current.

The normalization factor N is chosen such that

w(0)=1. (2.4)

The postulate of path-integral quantization is that
W(J) generates Green’s functions via the formula

©1 Tt )]0+ (50 (i) wo

(2.5)

J=0

where |0) is the ground state of the theory.
As a first step in defining the sum over volumes,
we introduce a variable S(x) defined by

+1, xe€V

S(x) = _ (2.6)
-1, xeV.

With this definition we rewrite Eq. (2.2) as
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W(J)=Nf d¢eXp[z‘fd“x(%(auwz-é(%z—z"ﬁﬁ%gm-%B)] > exp[if d‘*xS(x)[%(Mz-mZ)&_%B]].

14

(2.7

The definition of the sum over V is now formulated by dividing spacetime into a hypercubical lattice of
spacing a. We then require that each fundamental hypercube of the lattice is either entirely inside or out-
side of V. Labeling the basic hypercubes by an index i, we require that S(x) assume the same value S;

throughout the ith hypercube. Thus we write

W(J)=Nfd¢exp[if d4x(%(au¢)z_%<1n_2j2_1_wj> ¢2+J¢—%B)] H { P exp‘l:isi[ d‘*x[%(Mz—mz)(i)z—%B]]}
i ls; st ¢

=Nfd¢ exp[i fd"x(é(a‘ﬁp)z—%(@) PP+ dp— %B)]exp[ Z 1n(2 cos(fd“x[-}(Mz- m2)¢? -
- ;

[SIES

B]))] .

(2.8)

Here fi d*x denotes integration over the ith subvolume. In the limit of small lattice spacing we expand
2
3 [m(2cos([ atstzorr-mto - 18])) = 3z 2 3 ( f aselirr - moygr - 151 -
i i i i i

= %mz- %a‘*f d’x[3(M % - m*)¢*(x) - 2BF +0(a®) . (2.9)

Here © is the volume of space, and we have kept
the term of order a* for later discussion. Drop-
pingtermsthatvanish as a— 0, we find

w=n [ d¢exp[if d‘*x(%(amz-%(m—z;’]”—z) pe

—J¢)],

(2.10)
where we have absorbed some divergent factors in
N’

, ) 1,
N'=Nexp a—41n2— 3iQB). (2.11)
Equation (2.10) is the usual expression for the
generating function of a free field with a mass that

is the root mean square of m and M. The integra-
tion is standard® and gives

W(J) =exp [—%z f d*xd*' J(x) AF(x,x’)J(x’)} ,

(2.12)
where
) = dqq ~ige(x'=x 1
artex)= [ e
(2.13)

Our procedure has led to a free-field theory with
no remnants of the semiclassical bags discussed in
Ref. 1. Note that if we try to take M to infinity as
done in Ref. 1, then all states but the vacuum ac-

quire infinite energy. This is why we have kept
M finite.

Higher terms in the expansion of Eq. (2.9) con-
tain pieces with the form of self-couplings of the
¢ field. However, they are always multiplied by
enough powers of the cutoff a that they will vanish
as a-0, even taking account of the standard di-
vergences of quantum field theory. For example,
one might expect a logarithmic divergence assoc-
iated with the ¢* term in Eq. (2.9); however, it is
multiplied by the cutoff to the fourth power and
thus is still removed in the continuum limit of
vanishing cutoff. Here we have assumed the same
cutoff for the field theory as for the bag integral;
to choose a smaller one for the fields would cor-
respond to doing the field integration first, as done
in the next section.

Treating the region V classically and the fields
¢ quantum mechanically, the authors of Ref. 1
argue that B needs an infinite renormalization a-
rising from the differing zero-point energies of
the field inside and outside the bag. In our ap-
proach we have obtained a convergent theory; so
no renormalizations are demanded of us. Indeed,
the parameter B has disappeared from the theory.
However, if we allow the bare B to be infinite as
in Ref. 1, we should be more careful with the ex-
pansion in Eq. (2.9). To study this question we use
the lattice spacing to cut off the divergence in the
zero-point energy and calculate the divergent
piece of B as suggested in Ref. 1.

Associated with a free field of mass m is a zero-
point energy density (7/a is the momentum-space
ultraviolet cutoff)
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If we allow a stronger divergence in B one can
force additional ¢-dependent terms to survive as
a—0 in Eq. (2.9). Such terms, however, become
effective non- Hermitian couplings in the Lagran-
gian unless a complex B is taken. We feel that
taking a complex B of order the fourth power of
the cutoff is outside the spirit in which the model
was proposed.

5 =—1—f”akzdk (R +m?)L/2 (2.14)
=53 . .

The authors of Ref. 1 argue that the bare bag con-
stant B contains a divergent piece to cancel the
difference in this zero-point energy inside and out-
side the bag. This suggests

T/a
B=BR+4_1—2f kzdk[(k2+M2)1/2_(k2+m2)1/2]
T Jo III. ORDERS OF INTEGRATION
M?2—m? (2.15) In the preceding section we first summed over
o 16aZ ’ bag volumes and then integrated over fields. The
credibility of our result would be in doubt if this
order of doing things was essential. Thus in this
section we sum over fields first and then show
that the same result follows. In essence we first
inl2 f 4,1 2_ .2ya2 L
iz [ cos( f d*s(M* - m%)¢ ZB])} quantize the field ¢ in an arbitrary classical bag
configuration and then perform the path-integral

where B is a finite quantity. We insert this into
the expansion of Eq. (2.9) with the result

2 2)2'
= Q(EE— - m—z—ﬁm——)—> +0(a?). (2.16) summation over these configurations.
For a given volume V the Lagrangian is a quad-
The additional constant piece is absorbed in N and ratic form in the fields and the ¢ integration is
we arrive at the previous result in Eq. (2.10). standard,

J

WUI=N 2 fapessl s fass (é(amz -3 (-M—%”-‘—)qb - 5B +S()[5(° -m2>¢-;s])}

=N’ (detdp)'/? exp[— éz‘fd“xd“x’J(x)J(x’)AF(x, x’,S)] exp (- ifd"x 31 +S(x)]B> , (3.1)
v

where N’ is a new normalization factor and S(x) is the function defined in Eq. (2.6). The function &,(x, x’, S)
is the propagator for the ¢ field in the presence of the bag configuration V. It satisfies the differential
equation

M2 2 M? — m?
[D,+ = S() (—2””)] Ap(x, x',8) = = 8(x’ - x) (3.2)
and the boundary condition that it vanishes as |(x — x’),| = when 72 is given a small negative imaginary
part. We now divide space-time into hypercubes of volume a* as in the preceding section. To do the sum
over volumes we use the identity

fQ)+f(-1)= {exp[ln(2cosh—i>]f(v)} (3.3)
dv v=0
to obtain
- N’ l- a 1/2
W(J)=N'exp in: In <2 COShdv,- )] (detag)
xexp{—%ifd4xd4le(x)J(xl)AF(x,x’,v) - z'de4x§[1+v(x)]} \ , (3.4)
v=0
where the function v(x)
v(x)=v, (3.5)
when x is the ith basic hypercube. The propagator Ag(x, x’, v) satisfies the equation
2 2 2 _ 02
(Dx+ m_;_M__v(x)Mz_m) Ap(x, x', v) = = 84(x" = %) (3.6)

with the boundary condition Ag(x,x’,v)~ 0 as (x —x’),~ % and m® -~ m® - ie.
As a first step in removing the lattice spacing we convert to a continuum notation with the substitution
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d/dv; = a*6/5v(x),

Z-a“‘ J’d“x.
i

This gives

(3.7

(3.8)

(3.9

WJ)=N'exp [fd"x a™In <2 cosha* 527))] (detAp)' 2 exp [-— i ifdx dx’ J(x)J (x")Ap(x, x', v)

Expanding the first exponent in powers of a, we find

-4 a_0 — gt 1 4( 0 >2 8
a ln(ZCosha a*In2+3a 500 +0(a®).

dv(x)

(3.10)

- ide4x(}i—21£(ﬁ‘—l):l .

(3.11)

The first term, a~*1In2, gives the same infinite constant factor seen in Eq. (2.9) and is absorbed in N’. If

we can take a* to zero in the second term we obtain

W(J)=exp [— 3 fdx dx' J(x)JI(x') Ap(x, x’, v)]

=exp I:— 5 fdxdx’J(x)J(x’) Ap(x, x')] ,

v=0

(3.12)

where Ag(x, x’) is the free propagator for the average mass squared as given in Eq. (2.13).

This argument could break down if the [6/5v(x)]? in the second term of Eq. (3.11) is sufficiently singular
to cancel the a* factor. To investigate this we must study the effect of functional differentiation of
A(x, x’, v) with respect to v. Taking 6/6v(y) of Eq. (3.6) we find

M? - m?

m® + M M2 —-m?®\ b .o\ . ,
(Dx"' 7 — v = >5v(y)Ap(x,x , )= 6% (x = y) Ap(x, x’, v) . (3.13)
This is easily solved using (3.6) again
) M? -m?
—— A V)= —-—— o). .
Gv(y) F(x; X, ’U) 2 AF(x7 ¥, ‘U) AF(y’ X, ’l)) (3 14)
We now work out
) 5 M? —m? \?
—_— A 4 = —_— A A A !
6”(3’1) év(yg) F(x)x 71)) +( 2 > [ F(x9 yn ’U) F(yp yz: 'U) F(y27x ,U)
+B8 5%, Y3, 0) By, ¥y, v) Bp(y,, x'0)]. (3.15)

If we now try to set y,=9,=y, we encounter a
short-distance singularity in the propagator

Ap(¥y, 92, 0),

5
2 *—'——)Ap(x, x',v) ~

A v)
62}(3’1) 61)()’2 3 =9 =0 F(yu 2%

1

(y1 - y2)2 ’

(3.16)

so the [6/6v(x)]? occurring in (3.11) is indeed singu-
lar. However, in this problem we have the cutoff

a and these two derivatives actually occur with a
point separation of order a. Thus we must con-

r

sider [5/6v(x)F to be of order a~®. Clearly the a*
factor in Eq. (3.11) still suffices to remove this
term as a— 0. Similar arguments remove higher
terms in the expansion of Eq. (3.11). Thus we
still obtain Eq. (3.12) confirming the conclusion of
the preceding section.

IV. THE BAG WITH SURFACE TENSION

In this section we add to the bag Lagrangian a
term giving an effective surface energy to the
classical bag. This makes the surface a true
dynamical variable. We will show that this is in-
sufficient to adequately control the quantum fluctua-
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tions and the theory remains free with the field
having an average mass squared.

For a bag theory with surface tension we take
the Lagrangian

L= f a’*x[30,¢) - zm*¢* - B]
v
o | andie,08 - sarg?)
v

+ fdsxKnuauS(x) . (4.1)
Here S(x) is the function defined in Eq. (2.6), n,
is the inward normal to the bag surface, and K is
a constant representing the energy per unit area

contained in a static bag boundary. Note that
J

8,S(x) is proportional to n, times a & function
on the boundary. The surface tension is formally
a quadratic form in the derivatives of S(x).

As before we introduce a hypercubical lattice and
restrict S(x) to the same value over each funda-
mental hypercube. At this point the procedure is
somewhat ambiguous because of the inherent Lor-
entz noninvariance of the lattice. Such a noninvari-
ance is routine.to lattice formulations of field
theories and should disappear in the continuum
limit. We proceed by considering the pairs of
adjacent hypercubes which have different values
of S, i.e., a bag boundary lies between them. For
such pairs we introduce in the action a term - Ka?®
for spacelike separation or +Ka® for timelike se-
paration. Thus we are led to consider the action

5= [ a4 [%(amz - %(m §M2)¢2 - %BL 2 f d*x3(M° - m*)9* - 3B] ~§Ka® 3 Ay (S-S,

where

i,7

4.2)

+1 for relatively spacelike adjacent hypercubes

A,.=< =1 for relatively timelike adjacent hypercubes 4.3)

tJ

0 for nonadjacent hypercubes .

Note the similarity of the surface-tension term to the Hamiltonian for the Ising model in statistical me-
chanics.’? Indeed, the following manipulations should be familiar to devotees of that model. The path inte-

gral now reads

wH=N 3 fd¢exp [z <8+fd“xJ(x)¢(x)>:l.

Si=i1

The sum over S, is rewritten using Eq. (3.3),

(4.4)

W(J)=N f do exp [Z 1n<2 coshﬁj):lexp {1, [f d“x(%(ﬁu o) - %(mz ;MZ> & o - %B)

1

+Zv,j; d“x[%(Mz—mz)q)z—%B]—%KazzA,-j(vi—v,)z]}
1

i vizor

(4.5)

Now we convert back to a continuum notation using Egs. (3.7)-(3.9) and the relation

~3{Ka? ZA”(v{ -0~ +3K fd“x[auv(x)]z
i
to obtain

W(J)=N’fd¢exp [aq—/d4x<3—z)§(—35>2+o(a8)}

X exp{i fd“x(%(a“ o) - %(ngMz

(4.6)

)os)

+ [ atxo o - mie - 181+ | d‘xﬁx[apz)(x)]Z]}

s 4.7)

v=0
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where constant factors have been absorbed in N’. If we can now take a to zero in the first exponential, we
will recover the result of Secs. II and III, namely the terms involving v all drop out and we have a free
theory with mass squared the average of m® and M?. However, just as in the preceding section, we must
worry about possible singularities arising from the [6/6v(x)]* multiplying a*. (Higher terms in the expan-
sion involving more powers of a should be less important.) To argue that these cause no trouble, we con-
vert the operations involving v into a path integral over a new local field ¥(x) using the relations (N” is a

divergent normalization)

exp[a* [ atx(55) |- [ aveno | [ v (e s v2ut 55 ) | «.8)

and

e[~ [asnm g o] s,

Thus W(J) becomes (N is a new normalization factor)

2 2
W(J)=N" fd¢ dy exp [z fd‘*x(é(a,, ¢)? _% <M> P*+J P +K (3,9 - 29(x)[5(M* - m*)p* - %B]+ia"*wz)] .

2

This shows that the theory is equivalent to an in-
teracting field theory with the ¢ field having a
large imaginary mass squared. Taking a to zero,
this mass goes to infinity as a™. In conventional
Feynman perturbation theory this is a strong
enough behavior to make all diagrams containing ¢
lines go to zero. Consequently, we recover the
same free theory for the ¢ field as found in the
preceding sections.

V. CONCLUDING REMARKS

In our calculations we only used scalar fields.
For Dirac fields the same general results will
follow; however, complications arise with vector
fields. The boundary conditions of Ref. 1 require
that the bag surface be a magnetic source. These
conditions do not arise simply by taking the field
mass to be large outside the bag; rather, the
field is not allowed outside the bag at all. In this
paper we have shown for scalar fields that if the
external mass goes to infinity, we have a free

4.9)

r

theory of infinite-mass particles. We conjecture
a similar result for non-Abelian gauge fields,
namely that the vacuum will be the only finite-
energy state for the quantized bag theory with
boundary conditions as in Ref. 1.

It may be that some alternative quantization
scheme can avoid the difficulties found here.
Even if not, our conclusions are dependent on the
sharpness of the bag boundary. The bag can still
be a useful phenomenological tool if the surface
effects are small, which the success of the model
supports. If Yang-Mills gauge theory provides the
correct explanation for quark confinement through
the infrared divergences of the quantum theory, the
bag might well provide an approximate classical
description of hadronic states.
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