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1303 (1972).

“A comparison of the amplitudes to only the differential
cross section cannot distinguish the sign of ReMu - for
—t>0.2 GeV? between the present solution, Fig. 4(b), and
a solution similar to the p amplitude, Fig. 4(a). If the
n° polarization is calculated assuming ReM =<0 for
—t <1.0 GeV?, the resulting polarization prediction is
qualitatively similar to the curve in Fig. 3 but has a
smaller magnitude in the region —¢ > 0.4 GeV2.

#At 5 GeV/c, typical values of A’ and 7 are 1.3 GeV™?
and 5 GeV~l, respectively. With these parameters the
difference between AA=0 and AA=1 amplitudes is then
<10% for b>2.6 GeV™* (~% fm).

44 . Firestone, G. Goldhaber, A. Hirata, D. Lissauer,
and G. H. Trilling, Phys. Rev. Letters 25, 958 (1970).

%F. J. Gilman, Phys. Rev. 171, 1453 (1968).

46Wherever possible the quantities shown in Figs. 8-11
are taken from data in the region 0.0 —¢< 0.4 GeV2. For
the reaction KN — 1A, there is no clear break in the dif-
ferential cross section, and slopes were accepted when
calculated over a large momentum-transfer range.

4"For example, see Table III where it is seen that an
appropriate choice of SU(3) f/d ratios could account for
the observed mirror symmetry.

41 > production isospin-3 states can also contribute
in the t channel. Such exchanges are exotic, and are
expected to decrease in importance very rapidly with
energy. Experimental tests made above 3 GeV/c indicate
predominance of isospin 3 in the ¢ channel [see D. J.
Crennell, H. A. Gordon, K. W. Lai, and J. M. Scarr,
Phys. Rev. D 6, 1220 (1972); L. Moscoso, J. R. Hubbard,
A. Laveque, J. P. de Brion, C. Louedec, D. Revel,

J. Badier, E. Barrelet, A. Rouge, H. Videau, and
I. Videau, Nucl. Phys. B36, 332 (1972)].

49M. Ferro-Luzzi, H. K. Shepard, A. Vernan, R. T.

Poe, and B. C. Shen, Phys. Letters 34B, 524 (1971);

A. Kernan, R. T. Poe, B. C. Shen, I. Butterworth,
M. Ferro-Luzzi, and H. K. Shepard, U. C. Riverside re-
port, 1972 (unpublished).

50A recent analysis (Ref. 20) of the = and A reactions
does assume strong exchange degeneracy for the helicity-
flip amplitudes and consequently implies either nonpe-
ripheral imaginary parts for the nonflip amplitudes, or
substantially different radii of interaction for K * and K **
amplitudes.

51A. Baghian, G. Finocchiaro, M. L. Good, P. D.
Grannis, O. Guisan, J. Kirz, Y. Y. Lee, R. Pittman,

G. C. Fischer, and D. D. Reeder, Phys. Rev. D 4, 2667
(1971).

%In separate comparisons of the DAM amplitudes to the
2 and A data values were obtained of Ao =0.12 and Ax
=0.01, respectively. For the comparisons tabulated in
Table V and shown in the figures the parameter Aa was
fixed to the average of the & and A results to simplify the
evaluation of SU(3) f/d factors. We have used a(t)=0.5
+0.9¢ and oy (0) =0.33.

53We note that the precise values of these ratios are
significantly correlated to the choice for the phase of the
amplitudes at ¢ =0, which unfortunately is only poorly
determined by the present data. This correlation is
mainly due to the approximate equality, ReA,~ ReA ,
[see discussion following Eq. (16)], which implies the
following ratio for K * and K ** coupling constants [see
Egs. (8), (9), and (17)]: g"/gT~ cotl3may (0)12. This ratio
is ~ 3 for the K * trajectory intercept, o, (0)=0.33, used
in the present analysis. However, if we choose the p
Regge intercept, oy (0) =0.5, we then find the ratio g /gt
~ 1 and the ratio ImMuy=o/ReMpy=¢~ 0.4 for both Z and
A channels. The amplitudes resulting from the use of
the p Regge phase yield polarization and differential
cross-section predictions that cannot be excluded by the
present data.
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We study the constraints at high energy that analyticity imposes on amplitudes given a low-
energy theorem and an upper bound to the amplitude at intermediate energies. These con-
straints prove to be nontrivial when applied to the pion electromagnetic form factor. We
suggest that our results may be useful in a future analysis of the contribution of the spin-
dependent forward Compton amplitude to unpolarized Compton scattering. This application
will require experimental data on the forward differential cross section in the resonance

region.

In a recent paper Levin, Mathur, and Okubo'®
have phenomenologically discussed bounds on the
pion charge radius in terms of the modulus of the
pion electromagnetic form factor on its cut. In
this analysis they discovered an interesting side

result. They found that the modulus of the pion
form factor cannot begin to fall rapidly in a
“dipole” fashion until a four-momentum transfer
squared of at least 17 GeV? is reached. What is
remarkable about this result is the small amount
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of physical input that went into it; they used (1)
analyticity, (2) the low-energy theorem F,(0)=1,
(3) experimental data on the modulus of the form
factor for momentum transfers squared of less
than 4.4 GeV?, and (4) a smooth continuation of the
experimental data up to some momentum transfer
where a “dipole” behavior begins. This result
strikingly illustrates that analyticity imposes con-
straints on high-energy behavior in terms of the
low-energy properties of an amplitude.

The purpose of this paper is to make these con-
straints of analyticity more precise. We consider
an amplitude which is a real analytic function of
an energy variable except for possible cuts on the
real axis. In this variable we assume that the am-
plitude satisfies a low-energy theorem. We further
assume that below a certain energy on the cuts we
have an upper bound on the modulus of the ampli-
tude. We then find rigorous bounds on the ampli-
tude above this energy. These bounds are the best
possible in the sense that we can find analytic func-
tions that obey our conditions and saturate the
bounds.

In addition to the pion form factor, we consider
the application of our results to forward Compton
scattering. Here low-energy theorems give the
amplitudes at zero photon energy. We conclude
that our result is not very strong on the spin-in-
dependent part of the Compton amplitude. How-
ever, we find interesting lower bounds on the spin-
dependent part of the amplitude and its contribution
to unpolarized forward Compton scattering.

We now pose the mathematical problem. We as-
sume that F(¢) is a real analytic function of ¢ in
the entire ¢ plane except for a cut on the positive
real axis for ¢ in the range +»=>{>{,>0. We take

1

O|F@)*]

F(¢) to be polynomially bounded at infinity and to
have no essential singularities on the cut. We
further suppose that F(¢) satisfies a low-energy
theorem which, with no essential loss of general-
ity, we take to be F(0)=1.

Given such an amplitude F(t), we now presume
that there is an experimental upper bound on | F(¢)|?
for ¢ on the cut below some arbitrary value of ¢.
More precisely, we assume

|F()]?<H(t) for t,<t<N. 1)

We now consider an arbitrary positive and poly-
nomially bounded function w () defined on £ = N.
What we shall find is a lower bound on the quan-
tity

maxw (t)| F¢)]? @)

t=N
in terms of H () and w (). Our lower bound is the
best lower bound in the sense that we can find a
function satisfying the given properties of F(t)
and saturating this bound. As would be expected,
this bound becomes more stringent as H () is re-
duced toward |F(f)|>.

To find the desired bound, we make use of the

inequality

“diln|F@#)|> _ >0. @)
by LE=1 BEk
Up to a numerical coefficient, the left-hand side
of this is just the parameter € of Ref. 1. Inequal-
ity (3) is a generalization of the maximum-mod-
ulus theorem and is proven in Refs. 2 and 3. Any
analytic function satisfying our assumptions must
obey this condition. From inequality (3) we quick-
ly find our lower bound on expression (2):

~dtn|F@)|> (¥ dtIn|F®)|2  ("dt1nfw
_J‘ +fN

(=12 tE =t ) te =t

to

NdinH(t)

to

Solving for the expression of interest gives

2 « dt
< _—Tt(t—to)l 2+1n{:n3[w(t)|F(t)| ]}-[v tC—1,)07° - e TE—1,

“ dt lnw ®)

max [w ()| F(¢£)|?] = exp

t=N

K N qtInH(t)

. . t(t—to)”z N Lt -

In the Appendix we demonstate that this is the
best possible bound by giving a function that sat-
urates it. Inequality (5) is our main result.

We can simplify this bound by taking various
limits. If we take N to {,, we get

j"" diInw (¢)
- . t(t _to)llz

i d”“’:)‘f,)z . @)

>/ tl‘—t)l 2:, ’ )

1/2f o
max[w(t)lF(t)lZ]Zexp[f“ﬂ—Jlft fé—l_“z—)(t/l] - ®

t>tg

Another interesting case is obtained by letting N
be much larger than ¢, and taking w (t)=¢t“. This
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gives the result

max [T 0] el o " 0 .
()]

It is this form that we use the most in the follow-
ing discussion.

Finite-energy sum rules* (FESR) have for sev-
eral years been exploited as a method of relating
high- and low-energy behaviors of scattering am-
plitudes. In that program strong assumptions are
made on Regge asymptotic behavior with only a
few dominant trajectories. In this paper we make
no such assumptions and thus our results are on a
more rigorous footing. It is interesting to compare
our results to those of FESR. Qualitatively, the
smaller H (¢) is for £ < N, the larger is our lower
bound involving |F(¢)|? for t>N. FESR suggest
that a small low-energy amplitude is associated
with small high-energy behavior. This contrast
is not actually a conflict because we impose the
additional constraint F(0)=1.

In this paper we give lower bounds on an ampli-
tude. One might ask whether there exist upper
bounds as well. On the basis of our input, the
answer to this question is no. This is essentially
because a zero could occur close to the point of
the low-energy theorem, thereby allowing the
amplitude elsewhere to be as large as desired.

As a first application, let us sketch how the
Levin, Mathur, and Okubo condition® on the large-
momentum-transfer behavior of the pion form fac-
tor follows from our bound. Taking F({) to be the
pion form factor, we assume |F(¢)|<1/t* for t=N.
If we letw (£)=¢*, we find a bound on the coeffi-
cient of the ¢~ behavior of |F(t)|? in terms of the
form factor for f below N. If, following Ref. 1, we
force a smooth connection between their extrapo-
lation of the data below N and the dipole behavior
above N, then their condition on N follows. This
constraint on N depends strongly on the assumed
form factor (or an upper bound to the form factor)
below N. A presently unknown J=1, C=-~reso-
nance above 4.4 GeV? can invalidate this result.

We now apply our bounds to Compton scattering
from a spin-; target. Our notation follows Dama-
shek and Gilman.® In terms of the Pauli spinors
for the target particle in its initial and final states,
the forward Compton amplitude can be written

F@)=x%[fi0)€F € +iG- (EFXE)f,0)]x;, (8)

where v is the lab photon energy and €,(&,) is the
polarization vector for the initial (final) photon.
We normalize the amplitude such that

do

70 |, T 17O ©)

Both f,(v) and f,(v) can be continued as analytic
functions in the cut v plane with cuts from v, to «
and -« to -v,, where v, is the inelastic threshold
energy. We work to lowest nonvanishing order in
the electric charge so that v, is nonzero. In this
analytic continuation, f,(v) is an even function of
v and f,(v) is odd. The amplitudes f;(¥) and f,(v)
satisfy the low-energy theorems
2
f 1 (0) == 92' ’

” (10)

, ak?
fz(0)=_ _27}1—2 )

where a =1k, @ is the target charge in units of
the electron charge, « is the target anomalous
magnetic moment, and m is the target mass.

We first apply our bound to the amplitude f; (v).
Since f, () is an even function of v, we consider
it as a function of v? with only one cut in the v2
plane from v,® to «. In our general discussion ¢
should now be interpreted as v2._ To choose a use-
ful w (v?), we appeal to Regge theory. At high en-
ergies the amplitude f, () should be dominated by
Pomeranchukon exchange. This gives asymptot-
ically ’

fiw)~icv, (1)
suggesting that we pick
wE)=v-2, (12)

Using Eq. (7), we get

mex (55 () o [ s

V=N> 123 o

(13)

where H (v) is any upper bound to | f,)|2/[ f,(0)]?
for v between v, and N. Of course H(v) can be re-
placed by | f,(¥)|?/[ f,(0)]? where it is known.

It is easy to convince oneself that experimentally
this is a rather weak restriction on f,(v) when the
target is a proton. This is because experiment in-
dicates that | f, ()| is quite large.® Already at a
photon lab energy of only 0.22 GeV the imaginary
part of f,(v) exceeds f,(0) in magnitude. Since our
only input was analytic properties and the low-en-
ergy theorem, a dispersion relation calculation of
f,v) using the low-energy theorem will automati-
cally satisfy inequality (11). This means that f, ()
as given by Damashek and Gilman ® must obey our
constraint. This amplitude adequately describes
all presently available data.

Let us comment that although our bound in this
case appears quite weak, it is likely that inequality
(8) is in actuality an equality. This would be the
case if, and only if, f(v) has no zeros in the entire
v plane away from the cuts.?®* The analysis of Ref.
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5 indicates that f,(0) has no zeros for real v. But
/1) can have zeros only for real v, as can be
verified from positivity, the usual dispersion rela-
tion, and the fact that f,(0) is nonpositive. For
inequality (3) to become an equality requires a
quite small | f,(v)| near threshold in order to can-
cel the positive contributions to the integral from
larger v. This is what happens with the amplitude
given in Ref. 5.

We now turn our attention to the amplitude f,(v).
Since f,(v) is an odd function, we consider

DAY

F@?) S0) (14)
This function should satisfy our assumptions on
F(¢). To pick w(f) we again appeal to Regge theory.
The asymptotic behavior of f,(v) is controlled by
exchanges of abnormal parity with positive charge
conjugation and odd signature. The highest such
known trajectory is that of the A, meson with @ A 0)
~0. This gives the asymptotic behavior

f>w)~ixXconst. 15)
Therefore we have
|Fen)e~ S5 (16)

This suggests choosing
w@?)=v?. 1)
Using inequality (7), we get

N
L0 = Ny O exp (- [ o ;‘-f,,”—m:l-f—(”v)-)
(18)

where H (v) is any function satisfying

HE)> O for s, < b <w. (19)
VZ[ le (0)]2 0
Inequality (18) is a nontrivial restriction imposed
by analyticity on the high-energy contribution of
| /,@)|? to forward Compton scattering.

Let us remark that | f,()|? can be determined
from unpolarized cross sections. This follows
from the fact that the unpolarized forward Comp-
ton cross section is given by

4o
aQ

b=|f1(’/)l2+lfz(u)’23 (20)

0°,1lal
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while f,(v) is well determined from unpolarized

total cross sections through the use of dispersion

relations. Thus inequality (18) gives a nonzero

lower bound on the experimentally measurable

f, contribution to unpolarized Compton scattering.
Present experimental data on the forward cross

section are quite limited. For v of 4 to 17 GeV,

| /,)]? essentially explains the experiments on

Compton scattering from protons, implying that

| £00)]? contributes less than 10% of the cross sec-

tion.® This means that in this range

[£0)2= 2X10'32<7%>2cm2. @1)

There are presently no direct data in the resonance
region, where |f,()|* is expected to be largest.
The isobar model used by Drell and Hearn” indi-
cates that at the A (1236) resonance

| f,we)2~1.3X107% cm?. (22)

Using our bound in the form of Eq. (6), we get
max | f,(v)[>> 6.2X107% cm?. 23)
vy

This is considerably below the value in Eq. (22).
Consequently, in order for our bound to be useful
the resonances should be removed. This is most
easily accomplished by setting N at an energy
above the resonance region, although it could also
be done with a properly chosen w (v?). These pro-
cedures are essentially equivalent. Our bounds
depend critically on the low-energy data; thus,
further experiments in the resonance region are
needed to determine their utility. Of course any
resonance model that is analytic and satisfies the
low-energy theorem will automatically satisfy our
bounds.

In summary, we have found lower bounds that
analyticity imposes on amplitudes at high energy
in terms of low-energy theorems and intermediate-
energy data. This constraint when applied to the
pion form factor has shown itself to be nontrivial
when confronted with experimental data. We indi-
cate that the application to the amplitude f, of for-
ward Compton scattering may also be interesting.
This awaits further experimental information.
Our result does not appear to be useful on f, of
forward Compton scattering because this amplitude
is experimentally quite large compared to its low-
energy value.

APPENDIX

Here we give a function that satisfies all our conditions on F(f) and saturates the bound in inequality (5):

dt'Inw(t’)

—7)/2 N ’ ’ o
F(t>=eXp{<to Lk ()

o T=DE =57 ") TDE -1
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= dt'Inw (')

([ e [ ) [ S

v T (t’-to)"z/J} - @D

We take the branch of the square-root function with positive real part where it occurs in this equation.
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We show that measurements of deep-inelastic bremsstrahlung, e* +p — e* +y +anything, in
the appropriate scaling region will provide a definitive test for fractionally charged constitu-
ents in the proton, provided the parton model is valid. More precisely, measurement of the
difference between the scaling inclusive bremsstrahlung cross sections of the positron and
electron will allow the determination of a proton structure function V(x) which, unlike the
deep-inelastic e-p structure functions, obeys an exact sum rule based on conserved quantum
numbers. In particular, we show that [} dx V(x) =3Q + %B = % for a proton target) in the quark
model, whereas fo‘ dxV(x)=Q in the case of integrally charged constituents. Since the result
is independent of the momentum distribution of the partons, the sum rule holds for nuclear
targets as well. Since V(x), which involves the cube of the parton charge, is related to odd-
charge-conjugation exchange in the ¢ channel, Pomeranchukon, and other C-even contribu-
tions are not present, so that V(x) should have a readily integrable quasielastic peak. This,
combined with the fact that there exists a simple kinematic region in which the difference is
of the same order as the inclusive bremsstrahlung cross sections themselves, and the fact
that there is no hadronic-decay background, should make this a feasible experiment on pro-

ton and nuclear targets.

INTRODUCTION

The observation of scaling in the highly inelastic
limit of electron-proton scattering has excited con-
siderable interest in constituent models of hadrons.
The existence of charged, structureless “partons”
in the nucleon, together with an assumption limit-
ing the partons’ momentum distribution, is suffi-
cient to derive scaling.! It is also well known that
to account for scaling it is not necessary to postu-
late the full apparatus of a parton model but in-
stead only to abstract from such a theory the singu-
lar behavior of current commutators in the vicinity

of the light cone.?

Since they are more specific, however, parton
models make concrete predictions which cannot be
obtained from more general light-cone considera-
tions. An example is the prediction of scaling in
the process p+p - u'+u” +anything® at high energy
and large (u*y”) invariant mass. A test of this pre-
diction will be central in establishing the parton
model independently of the light-cone approach.*
More recently the parton model has been found to
provide a particularly simple explanation of large-
angle exclusive scattering.® Although the parton
model may be only an abstraction of a more com-



