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Abstract

General relativity deeply entwines time and space. Formulating dy-
namics requires a convention for time. As one enters a black-hole, time
and space interchange places. With a metric that removes the singularity
at the black hole horizon, one can cover space-time with a series of space-
like surfaces that never reach the singularity at the black hole center. On
such a set of surfaces no information is ever lost, although on black hole
evaporation the space-like surfaces become disconnected.
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Physics describes what things are made of and how they evolve. But
the word “evolve” requires a concept of “time.” For the non-relativistic
situation, either classically or quantum mechanically, time is simply an
external variable.

Things get more interesting when special relativity comes into play.
Then the concept of “time” is different for observers moving with rela-
tive velocities. For an observer moving at some velocity v in say the z
direction relative to another observer at rest, we have the famous Lorentz
transformation of coordinates

t′ =
t− vz/c2

√

1− v2/c2
, z′ =

z − vt
√

1− v2/c2
, x′ = x, y′ = y. (1)

Here c is the speed of light, {t′, x′, y′, z′} are the time and space coordi-
nates for the moving observer, and {t, x, y, z} are for the stationary one.

Classically it is well known how to set up dynamics consistent with this
transformation being a symmetry. Quantum mechanically we have rela-
tivistic quantum field theory, which introduces additional consequences.
In particular, antiparticles must appear in order to maintain the impos-
sibility of sending information faster than the speed of light. Another
subtle consequence is the connection between spin and statistics: half in-
teger spin particles must be fermions, while whole integer ones are bosons.

The above Lorentz transformation preserves a “distance” between two
nearby space-time points

ds2 = c2dt2 − dx2 − dy2 − dz2 = c2dt′
2

− dx′2 − dy′2 − dz′
2

. (2)

Here {dt, dx, dy, dz} represents the distance (usually considered as in-
finitesmal) between two space-time points for the corresponding observers.
Let us now simplify this slightly by working in units where c = 1.1 Thus
this becomes

ds2 = dt2 − d~x2. (3)

Now where things get really interesting is in general relativity, where
time depends not just on how fast one moves, but also where one is located.
Clocks on top of a mountain run faster than those at sea level. This is a
very small effect, but needs to be taken into consideration when precise
timing is necessary, such as for GPS systems.

This effect is manifest in the famous Schwarzchild formula generaliz-
ing the above metric to the space outside a stationary and non-rotating
gravitating object [1]

ds2 = (1− 1/r)dt2 − (1− 1/r)−1dr2 − r2dΩ2 (4)

Here we have switched to polar coordinates for the spatial components

x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ)

1Approximately true if we measure distances in feet and time in nanoseconds.
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and dΩ2 = dθ2 + sin2(θ)dφ2. For simplicity, measure distances in units of
the “Schwarzchild radius” for the object. For a black hole the radius of
the horizon is taken as unity.

Light cones, surfaces covered by following ds2 = 0 curves, behave
peculiarly as one approaches the horizon at r = 1. They “squish” together
as one moves in from outside. At the horizon, light can no longer escape.
And continuing through the horizon the concepts of space-like and time-
like effectively change places, with the coefficients of both dt2 and dr2

exchanging sign.
To appreciate the peculiar nature of these coordinates, consider an

ingoing light wave approaching the black hole radially from some initial
point t0, r0. On this trajectory, the vanishing of the metric tells us

dt = −
r

r − 1
dr (5)

which is easily integrated to give

t− t0 = r − r0 − log
(

r − 1

r0 − 1

)

. (6)

We see that as r approaches unity, time goes to infinity! The light never
reaches the horizon. With the Schwarzchild metric, not only can light not
leave the black hole, it can’t get in either. And as nothing goes faster
than light, nothing else can reach the horizon in finite time.

As is well known, the singularity displayed in the Schwarzchild metric
at r = 1 is somewhat artificial. It is possible to smooth this out with
an appropriate redefinition of coordinates. This was first made clear by
Lemaitre [2]. This raises a question. Can we find a remapping of our coor-
dinates so that time-like surfaces bend backward and only reach the point
where r = 0 at infinite time? If we can do this, setting up a dynamics
on these surfaces would avoid any paradoxes concerning information loss
as objects enter a black hole. They would always be somewhere on every
time slice, although of course they may not be able to communicate with
observers outside. The idea of space-time regions being unable to com-
municate is already familiar in special relativity, where no communication
can occur between space-like separated points.

To proceed, consider a new definition of time w using a change of
variables similar to that made by Finkelstein [3]

w = t+ log(1− 1/r). (7)

The addition is singular at the horizon, r = 1, but this singularity serves
to smooth out the singularity in the Schwarzchild metric. Also inside the
black hole this transformation becomes complex, but this again comes
from removing the singularity.

Using this new time the metric equation reduces to

ds2 = dw2 (1− 1/r)− 2dw dr/r2 − dr2 (1+1/r)(1+ 1/r2)− r2 dΩ2. (8)

This is a smooth real function as one goes through the horizon. The off-
diagonal term proportional to dw dr rotates the “time-like” w direction
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with space. In the process constant w surfaces continue to have negative
ds2; i.e. they remain space-like. Light cones turn gradually inwards
until at the horizon they effectively go “sideways,” with both ingoing and
outgoing light waves flowing towards the origin. Note that a singularity
remains at r = 0. However, this occurs at infinite values of the new time
w. In the new coordinates the origin is never reached.

One of the complications of trying to do quantum field theory in curved
space is that a stable ground state does not exist [4]. In general, Hawk-
ing radiation occurs from non-flat regions, with the wavelength of the
radiation related to the scale of the curvature. One of the dramatic con-
sequences is that black holes, at least in the conventional definition of
time, eventually evaporate. At some point in space-time a black hole will
cease to exist. How does this process appear in our new coordinates?
Effectively, space-like surfaces split into disconnected pieces. There is the
smooth ordinary space and time after the evaporation, but the space-like
surfaces inside the black hole are still there, albeit at earlier Schwarzchild
times. Any information tossed into the black hole is still there when we
consider time evolution in w rather than the original t variable.

We conclude that to study dynamics in physical situations with an
event horizon, it is natural to define time in a way that goes sideways
relative to conventional variables inside the horizon. This can be done
in a manner that the origin of the black hole occurs at infinite time. On
black hole evaporation, space-like surfaces become disconnected, but all
information from earlier events remains somewhere.
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